广义相对论的基本原理是什么?

  物理定律的形式在一切参考系都是不变的。该定理是狭义相对性原理的推广。在狭义相对论中,如果我们尝试去定义惯性系,会出现死循环:一般地,不受外力的物体,在其保持静止或匀速直线运动状态不变的坐标系是惯性系。

  判定物体不受外力是看当物体保持静止或匀速直线运动状态不变时,物体不受外力。很明显,逻辑出现了难以消除的死循环。这说明对于惯性系,人们无法给出严格定义,这不能不说是狭义相对论的严重缺憾。

  为了解决这个问题,爱因斯坦直接将惯性系的概念从相对论中剔除,用“任何参考系”代替了原来狭义相对性原理中“惯性系”。

  爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。

  物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。

  而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。

  引力是时空局域几何性质的表现。虽然广义相对论是爱因斯坦创立的,但是它的数学基础的源头可以追溯到欧氏几何的公理和数个世纪以来为证明欧几里德第五公设(即平行线永远保持等距)所做的努力。

  这方面的努力在罗巴切夫斯基、波尔约、高斯的工作中到达了顶点:他们指出欧氏第五公设是不能用前四条公设证明的。非欧几何的一般数学理论是由高斯于1827年完成的(1828年发表),他在研究曲面的性质时不再借助外围空间,而直接将曲面作为研究对象,创立了曲面的“内蕴”几何学。

  1854年,高斯的学生黎曼将高斯的内蕴几何学推广到高维空间,建立起任意维度的弯曲空间的几何学基础,被称为黎曼几何,在爱因斯坦发展出广义相对论之前,绝大多数人认为非欧几何是无法应用到真实世界中来的。

  展开全部等效原理:惯性质量与引力质量等效,也就是说引力场里任何一点都和一个非惯性系等效

  广义协变原理:相对于狭义相对论的狭义等效原理(所有物理规律在任何坐标系下形式保持一致),广义协变原理是说:一切规律在所有参考系(不止是惯性系)中保持一致。

TAG标签:
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。